ON THE EQUATIONS OF MOTION OF NONHOLONOMIC MECHANICAL SYSIEMS IN POINCARÉ-CHETAEV VARIABLES

PMM Vol. 32, N 5 5, 1968, pp. 804-814
FAM GUEN
(Hanoi and Moscow)
(Received January 11, 1968)

The equations of motion of nonholonomic systems in Poincaré-Chetaev variables [1] are derived directly from the general equation of dynamics with simultaneous allowance for all imposed constraints. Their equivalence to equations of motion derived by other methods is proved.

1. The equations of motion of nonholonomic systems. Let us consider a nonholonomic system with l degrees of freedom whose positions are defined by " Poincaré-Chetaev variables x_{1}, \ldots, x_{n} with p holonomic and q nonholonomic linear constraints.

As in [1], let $X_{0}, X_{1}, \ldots, X_{h}$ with the commutators

$$
\begin{equation*}
\left(X_{r} ; X_{s}\right)=\sum_{t=1}^{n} C_{r s t} X_{t} \quad(r=0,1, \ldots, k ; s=1, \ldots, k ; k=n-p) \tag{1.1}
\end{equation*}
$$

be the displacement operators of the so-called associated holonomic system obtained by removing all q nonholonomic constraints from the system under consideration;
$\eta_{1}, \ldots, \eta_{h}$ and $\omega_{1}, \ldots, \omega_{k}$ are the parameters of the real and possible displacements of this system; k is the number of degrees of freedom; the nonholonomic constraints are reducible to the relations

$$
\begin{equation*}
\eta_{v}=\sum_{s=1}^{l} c_{v s} \eta_{s}+c_{v 0}, \quad \omega_{v}=\sum_{s=1}^{l} c_{v s} \omega_{s} \quad(v=l+1, \ldots, k ; l=k-q) \tag{1.2}
\end{equation*}
$$

Here $C_{r s t}, c_{v s}, c_{v o}$ are certain functions of t and x_{i} which depend only on the constraint conditions and on the choice of the parameters η_{s} and ω_{s} of the corresponding holonomic system,

Then, by virtue of (2.2) of [1] and (1.2), the changes $d f$ and δf in an arbitrary function $f\left(t, x_{i}\right)$ on the real and possible displacements of the nonholonomic system, when all $p+q$ constraint conditions are fulfilled, are given by Formulas

$$
\begin{equation*}
d f=\left[Y_{0}(f)+\sum_{s=1}^{l} \eta_{s} Y_{s}(f)\right] d t, \quad \delta f=\sum_{s=1}^{l} \omega_{s} Y_{s}(f) \tag{1.3}
\end{equation*}
$$

Here $Y_{0}, Y_{1}, \ldots, Y_{l}$ are the displacement operators of the nonholonomic system, which can be expressed in terms of the operators X_{8} and the commutators, i.e.

$$
Y_{s}=X_{s}+\sum_{v=l+1}^{k} c_{v 8} X_{v}, \quad\left(Y_{r}, Y_{s}\right)=\sum_{t=1}^{l} k_{r s t} Y_{t}+\sum_{v=l+1}^{l} k_{r v} X_{v}\binom{r=0,1, \ldots, l}{s=1, \ldots, i}
$$

The coefficients in Expression (1.4) are given by Formulas

$$
\begin{gather*}
k_{\mathrm{rst}}=C_{r s t}+\sum_{v=l+1} c_{\mathrm{v} \theta} C_{r v t}+\sum_{\mu=t+1}^{k} c_{\mu r}\left(C_{\mu s t}+\sum_{v=l+1}^{k} c_{\mathrm{vs}} C_{\mu v t}\right) \\
k_{r \mathrm{sv}}^{*}=k_{r s v}-\sum_{t=1}^{l} c_{v t} k_{r s t}+Y_{r}\left(c_{v s}\right)-Y_{s}\left(c_{v r}\right) \tag{1.5}
\end{gather*}
$$

$$
\binom{r=0,1, \ldots, l ; *=1, \ldots, l}{t=1, \ldots, l, l+1, \ldots, k ; v=l+1, \ldots k}
$$

We can use operators (1.4) to find the equations of motion of a nonholonomic system with ideal constraints and the force function \boldsymbol{U} 'from the general equation of dynamics $\sum_{i=1}^{N}\left[\left(m_{i} u_{i}{ }^{\prime \prime}-\frac{\partial U}{\partial u_{i}}\right) \delta u_{i} \div\left(m_{i} v_{i}{ }^{\prime \prime}-\frac{\partial U}{\partial v_{i}}\right) \delta v_{i}+\left(m_{i} u_{i}{ }^{\prime \prime}-\frac{\dot{\partial U}}{\partial v_{i}}\right) \delta u_{i}\right]=0$

Here N denotes the number of material points of the system; u_{i}, v_{i}, w_{i} are the Cartesian coordinates of the i.th point, which, by the conditions of the problem, are functions of the variables $t, x_{1}, \ldots, x_{n} ; u_{i}^{\prime \prime}, v_{i}{ }^{\prime \prime}, w_{i}^{\prime \prime}$ are its accelerations; $\delta u_{i}, \delta v_{i}$, δw_{l} are the possible displacements of a point permitted by all the constraints, and defined, in accordance with (1.3), by Formulas

$$
\begin{equation*}
\delta u_{i}=\sum_{i=1}^{l} \omega_{s} Y_{s}\left(u_{i}\right), \quad \delta v_{i}=\sum_{\substack{s=1 \\(i=1, \ldots, N)}}^{l} \omega_{s} Y_{s}\left(v_{i}\right), \quad \delta w_{i}=\sum_{s=1}^{l} \omega_{s} Y_{s}\left(w_{i}\right) \tag{1.7}
\end{equation*}
$$

To this end, substituting (1.7) into (1.6), by virtue of the independence of $\omega_{1}, \ldots, \omega_{l}$, we obtain N
or

$$
\begin{align*}
& \sum_{i=1}^{N} m_{i}\left[u_{i}{ }^{\prime \prime} Y_{s}\left(u_{i}\right)+v_{i}{ }^{\prime \prime} Y_{s}\left(v_{i}\right)+w_{i}{ }^{\prime \prime} Y_{t}\left(w_{i}\right)\right]-Y_{s}(U)=0 \quad(s=1, \ldots, l) \tag{1.8}\\
& \quad \frac{d}{d t} \sum_{i=1}^{N} m_{i}\left[u_{i}{ }^{\prime} Y_{s}\left(u_{i}\right)+v_{i}{ }^{\prime} Y_{s}\left(v_{i}\right)+w_{i}^{\prime} Y_{s}\left(w_{i}\right)\right]-Y_{s}(U)- \\
& -\sum_{i=1}^{N} m_{i}\left[u_{i}^{\prime} \frac{d Y_{s}\left(u_{i}\right)}{d t}+v_{i}^{\prime} \frac{d Y_{n}\left(v_{i}\right)}{d t}+w_{i}^{\prime} \frac{d Y_{n}\left(w_{i}\right)}{d t}\right]=0 \quad(\pi=1, \ldots, l) \tag{1.9}
\end{align*}
$$

Here $u_{i}^{\prime}, v_{i}^{\prime}, w_{i}^{\prime}$ are the velocities of the point defined, according to (1.3), by formulas written only for $f=u_{i}$,

$$
\begin{equation*}
u_{i}^{\prime}=Y_{0}\left(u_{i}\right)+\sum_{s=1}^{i} \eta_{z} Y_{s}\left(u_{i}\right) \quad(i=1, \ldots, N) \tag{1.10}
\end{equation*}
$$

From (1.10) we obtain

$$
\begin{equation*}
Y_{s}\left(u_{i}\right)=\frac{\partial u_{i}^{\prime}}{\partial \eta_{s}}, \quad Y_{s}\left(v_{i}\right)=\frac{\partial v_{i}^{\prime}}{\partial \eta_{s}}, \quad Y_{s}\left(w_{i}\right)=\frac{\partial w_{i}^{\prime}}{\partial \eta_{s}} \quad\binom{s=1, \ldots, l}{i=1, \ldots, N} \tag{1.11}
\end{equation*}
$$

and, according to (1.3), for the functions $f=u_{i}, v_{i}, w_{i}$ we have

$$
\begin{equation*}
\frac{d Y_{s}(f)}{d t}=Y_{s}\left(\frac{d f}{d t}\right)+\left(Y_{0}, Y_{s}\right) f+\sum_{r=1}^{l} \eta_{s}\left(Y_{r}, Y_{s}\right) f \quad(s=1, \ldots, l) \tag{1.12}
\end{equation*}
$$

Substituting (1.11) and (1.12) into (1.9) with allowance for (1.4), we obtain

$$
\begin{align*}
& \frac{d}{d t} \frac{\partial T}{\partial \eta_{s}}-Y_{s}(T+U)-\sum_{t=1}^{l}\left(k_{0 s t}+\sum_{r=1}^{l} \eta_{r} k_{r s t}\right) \frac{\partial}{\partial \eta_{t}}- \\
& -\sum_{v=i+1}^{b}\left(k_{0 s v}^{*}+\sum_{r=1}^{l} \eta_{r} k_{r s v}^{* *}\right)\left(\frac{\partial T^{\mathrm{o}}}{\partial \eta_{v}}\right)=0 \quad(s=1, \ldots, l) \tag{1.13}
\end{align*}
$$

These are the equations of motion of a nonholonomic system in Poincaré-Chetaev variables derived from the general equation of dynamics with simultaneous allowance for all the constraints imposed on the system beginning at the initial instant. Here T is
the kinetic energy of the nonholonomic system,

$$
\begin{equation*}
T\left(t, x_{i}, \eta_{1}, \ldots, \eta_{l}\right)=\frac{1}{2} \sum_{i=1}^{N} m_{i}\left(u_{i}^{\prime 2}+v_{i}^{\prime 2}+w_{i}^{\prime 2}\right) \tag{1.14}
\end{equation*}
$$

and $\left(\partial T^{\circ} / \partial \eta_{\nu}\right)$ denote the Expressions

$$
\begin{gather*}
\left(\frac{\partial T^{\circ}}{\partial \eta_{v}}\right)=\sum_{i=1}^{N} m_{i}\left[u_{i}^{\prime} X_{v}\left(u_{i}\right)+v_{i}^{\prime} X_{v}\left(v_{i}\right)+w_{i}^{\prime} X_{v}\left(w_{i}\right)\right] \tag{1.15}\\
(v=l+1, \ldots, k)
\end{gather*}
$$

Let us show that the $\left(\partial T^{\circ} / \partial \eta_{v}\right)$ have the mechanical values of the impulses corresponding to the dependent parameters η_{ν} of (1.2) if T° is the kinetic energy of the corresponding holonomic system computed without allowance for the nonholonomic constraints or for (1.2) using Formulas
$T^{\circ}=\frac{1}{2} \sum_{i=1}^{N} m_{i}\left(u_{i}^{\prime 2}+v_{i}^{\prime 2}+w_{i}^{\prime 2}\right), \quad u_{i}=X_{0}\left(u_{i}\right)+\sum_{s=1}^{k} \eta_{s} X_{s}\left(u_{i}\right) \quad(i=1, \ldots, N)$
Here the formulas for the derivatives have been written for $u_{i}{ }^{\prime}$ only. In fact, from (1.16) we can obtain, a mong other things, Expressions
$X_{v}\left(u_{i}\right)=\frac{\partial u_{i}^{\prime}}{\partial \eta_{v}}, \quad X_{v}\left(v_{i}\right)=\frac{\partial v_{i}^{\prime}}{\partial \eta_{v}}, \quad X_{v}\left(w_{i}\right)=\frac{\partial w_{i}^{\prime}}{\partial \eta_{v}} \quad\binom{v=l+1, \ldots, k}{i=1, \ldots, N}$
Substituting (1.17) into (1.15), we obtain from these relations expressions for the impulses $\partial T^{\circ} / \partial \eta_{v}$.

Eqs. (1.13) coincide with Eqs. (3.14) of [1] obtained by the Chaplygin method [2], since the kinetic energy T in (1.13) computed from Formula (1.14), and the function Θ in [1] are equal to each other. This can be verified by computation.
2. The equivalence of the equations of motion of nonholonomic systems. There are at present many methods for deriving the equations of motion of nonholonomic systems. This often raises the question of their equivalence [3]. In this connection, having shown that the above direct method and the method of Chaplygin yield equivalent results, let us consider the methods of Appell [4], Hamel [5], Volterra [6], et al.
Differentiating (1.10) with respect to t, we obtain

$$
\begin{gather*}
u_{i}^{\prime \prime}=\sum_{s=1}^{l} \eta_{s}{ }^{\prime} Y_{s}\left(u_{i}\right)+\ldots, \quad v_{i}^{\prime \prime}=\sum_{s=1}^{l} \eta_{s} Y_{s}\left(v_{i}\right)+\ldots, \\
w_{i}^{\prime \prime}=\sum_{s=1}^{l} \eta_{s}{ }^{\prime} Y_{s}\left(w_{i}\right)+\ldots \quad(i=1, \ldots, N) \tag{2.1}
\end{gather*}
$$

Here we have written only the formulas for $u_{i}{ }^{\prime \prime} ;$ the dotted lines denote terms not containing $\eta_{s}{ }^{\prime}=d \eta_{\mathrm{s}} / d t(s=1, \ldots, l)$.

Stipulating that

$$
\begin{equation*}
Y_{s}\left(u_{i}\right)=\frac{\partial u_{i}^{\prime \prime}}{d \eta_{s}^{\prime}}, \quad Y_{s}\left(v_{i}\right)=\frac{\partial v_{i}^{\prime \prime}}{\partial \eta_{s}{ }^{\prime}}, \quad Y_{s}\left(w_{i}\right)=\frac{\partial w_{i}^{\prime \prime}}{\partial \eta_{s}^{\prime}} \quad\binom{s=1, \ldots l}{i=1, \ldots, N} \tag{2.2}
\end{equation*}
$$

and substituting these quantities into (1.8), we obtain from (2.1) the Appell equations for a nonholonomic system in Poincaré-Chetaev variables,

$$
\begin{equation*}
\frac{\partial S}{\partial \eta_{s}{ }^{\prime}}=Y_{s}(U) \quad(s=1, \ldots, l) \tag{2.3}
\end{equation*}
$$

Here S is the acceleration energy computed from Formulas (2.1),

$$
\begin{equation*}
S=\frac{1}{2} \sum_{i=1}^{N} m_{i}\left(u_{i}^{\prime \prime 2}+v_{i}^{\prime 2}+w_{i}^{\prime 2}\right) \tag{2.4}
\end{equation*}
$$

The Appell Eqs. (2.3) are equivalent to Eqs. (1.13), since computations show that
$\frac{\partial S}{\partial \eta_{s}{ }^{\prime}}=\frac{d}{d t} \frac{\partial T}{\partial \eta_{s}}-\sum_{i=1}^{N} m_{i}\left[u_{i}{ }^{\prime} \frac{d Y_{z}\left(u_{i}\right)}{d l}+v_{i}^{\prime} \frac{d Y_{s}\left(v_{i}\right)}{d l}+w_{i}{ }^{\prime} \frac{d Y_{s}\left(w_{i}\right)}{d l}\right] \quad(s=1, \ldots, l)$
Moreover, the right sides of (2.5) become (1.13), as we can see (*) from (1.9).
According to Hamel [5], the equations of motion of nonholonomic systems are derivable from the conditions

$$
\begin{equation*}
\frac{d \delta u_{i}}{d t}-\delta u_{i}^{\prime}=0, \frac{d \delta v_{i}}{d t}-\delta v_{i}^{\prime}=0, \quad \frac{d \delta w_{i}}{d t}-\delta w_{i}^{\prime}=0 \quad(i=1, \ldots, N) \tag{2.6}
\end{equation*}
$$

established for all Cartesian coordinates of points of the system (**), and from the Beltrami equation, which can be written in Poincaré-Chetaev variables as

$$
\begin{equation*}
\frac{d}{d t} \sum_{s=1}^{k} \omega_{s} \frac{\partial T^{\circ}}{\partial \eta_{s}}-\delta\left(T^{\circ}+U\right)=0 \tag{2.7}
\end{equation*}
$$

The operations d and δ are employed here without allowance for nonholonomic constraints, i. e. according to (1.5) of [1]; T° is the kinetic energy of the corresponding holonomic system computed from Formulas (1.16). In Hamel's method nonholonomic constraints (1.2) are allowed for only after (2.7) under (2.6) has already been reduced to form (3.2) of [1]. This implies the natural equivalence of (1.13) and the equations obtained by Hamel's method, since the latter can be reduced to (1.13) or to the equivalent Eqs. (3.14) of [1] by converting to the kinetic energy T according to Formula (3.8) of [1].

For example, let us consider the case $c_{v s}=c_{v 0}=0$ or $\eta_{v}=0, \omega_{v}=0$ (see [5 and 3]). The Hamel equations are then

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial T^{\circ}}{\partial \eta_{s}}\right)_{n_{v}=0}-\left[X_{t}\left(T^{\circ}+U\right)\right]_{n_{v}=0}-\sum_{t=1}^{k}\left(C_{0_{s t}}+\sum_{r=1}^{t} \eta_{r} C_{i s t}\right)\left(\frac{\partial T^{v}}{d \eta_{t}}\right)_{n_{i y}=0}=0 \\
(s=1, \ldots, l)
\end{gathered}
$$

Converting to the kinetic energy T or Θ according to Formula (3.8) of $[1]$ and making the substitutions

$$
\begin{equation*}
\left(\frac{\partial T^{\circ}}{\partial \eta_{s}}\right)_{\eta_{y}=0}=\frac{\partial T}{\partial \eta_{s}},\left[X_{\mathrm{s}}\left(T^{\circ}\right)\right]_{\eta_{\mathrm{y}}=0}=X_{s}(T) \quad(s=1, \ldots, l) \tag{2.9}
\end{equation*}
$$

in (2.8), we obtain the special case of Eqs. (1.13) when $c_{\mathrm{vg}}=c_{\mathrm{v}_{0}}=0$

$$
\begin{align*}
& \frac{d}{d t} \frac{\partial T}{\partial \eta_{s}}-X_{s}(T+U)-\sum_{t=1}^{l}\left(C_{0 s t}+\sum_{r=1}^{l} \eta_{r} C_{r s t}\right) \frac{\partial T}{\partial \eta_{l}}- \tag{2.10}\\
& -\sum_{v=i+1}^{k}\left(C_{0 s_{v}}+\sum_{r=1}^{l} \eta_{r} C_{r s v}\right)\left(\frac{\partial T^{\circ}}{\partial \eta_{v}}\right)=0 \quad(s=1, \ldots, l)
\end{align*}
$$

[^0]In [6] Volterra derived the equations of motion of nonholonomic systems from the Beltrami equation and conditions (2.6), defining the operations d and δ as in (1.3),

$$
\begin{gather*}
\sum_{s=1}^{l} \omega_{s}\left[\frac{d}{d t} \frac{\partial T}{\partial \eta_{s}}-Y_{s}(T+U)\right]+\sum_{t=1}^{l}\left(\frac{d \omega_{t}}{d t}-\delta \eta_{t}\right) \frac{\partial T}{\partial \eta_{t}}=0 \tag{2.11}\\
\sum_{t=1}^{l}\left(\frac{d \omega_{t}}{d t}-\delta \eta_{t}\right) Y_{t}\left(u_{i}\right)=-\sum_{s=1}^{l} \omega_{s}\left[\sum_{t=1}^{l}\left(k_{0 s t}+\sum_{r=1}^{l} \eta_{r} k_{r s t}\right) Y_{i}\left(u_{i}\right)+\right. \\
\left.+\sum_{v=l+1}^{l}\left(k_{08 v}^{*}+\sum_{r=1}^{l} \eta_{r} k_{r s v}^{*}\right) X_{v}\left(u_{i}\right)\right] \quad(i=1, \ldots, N) \tag{2.12}
\end{gather*}
$$

Here T is kinetic energy (1.14); Expressions (2.12) for v_{i} and w_{i} are obtainable in similar fashion. Following Volterra, we multiply (2.12) by $m_{t} Y_{s}\left(u_{i}\right), m_{i} Y_{s}\left(v_{i}\right)$, $m_{i} Y_{i}\left(w_{i}\right)$, sum over i from 1 to N. and solve the result for $d \omega_{1} / d t-\delta \eta_{1}$

$$
\begin{equation*}
\frac{d \omega_{t}}{d t}-\delta \eta_{t}=-\sum_{s=1}^{t} \omega_{s}\left(a_{0 s t}+\sum_{r=1}^{t} \eta_{r} a_{r s t}\right) \quad(t=1, \ldots, l) \tag{2.13}
\end{equation*}
$$

Substituting (2.13) into (2.11), we obtain the Volterra equations in Poincaré-Chetaev variables

$$
\frac{d}{d t} \frac{\partial T}{\partial \eta_{s}}-Y_{\mathrm{s}}(T+U)-\sum_{t=1}^{i}\left(a_{0 s t}+\sum_{r=1}^{l} \eta_{r} a_{r s t}\right) \frac{\partial T}{\partial \eta_{t}}=0 \quad(s=1, \ldots, l)
$$

Here

$$
\begin{align*}
& a_{r s t}=k_{r s t}+\sum_{v=l+1}^{k} k_{r s v}^{*} \sum_{k=1}^{l} a_{h, t}^{-1} \sum_{i=1}^{N} m_{i}\left[Y_{k}\left(u_{i}\right) X_{v}\left(u_{i}\right)+\right. \tag{2.14}\\
& \left.+Y_{k}\left(v_{i}\right) X_{v}\left(v_{i}\right)+Y_{k}\left(w_{i}\right) X_{v}\left(w_{i}\right)\right] \quad\binom{r=0,1, \ldots, l}{s, t=1, \ldots, l} \tag{2.15}
\end{align*}
$$

where $a_{k l}^{-1}$ is an element of the inverse of the matrix whose elements are the coefficients $a_{h l}$ of the products $\eta_{h} \eta_{l}$ in the quadratic part of the kinetic energy T (1.14).

The above derivation of Eqs. (2.14) cannot be considered adequately justifiable for nonholonomic systems, since, generally speaking,(2.13) may not be a solution of system (2.12) because of its indeterminacy (this was noted in [6 and 3]). In fact, substituting (2.13) into (2.12), we obtain the following expression for u_{j} (and analogously for v_{j} and w_{j}):

$$
\begin{gather*}
X_{v}\left(u_{j}\right)=\sum_{t=1}^{l} Y_{t}\left(u_{j}\right) \sum_{k=1}^{l} a_{k t}^{-1} \sum_{i=1}^{N} m_{i}\left[Y_{k}\left(u_{i}\right) X_{v}\left(w_{i}\right)+\right. \\
\left.+Y_{k}\left(v_{i}\right) X_{v}\left(v_{l}\right)+Y_{k}\left(w_{i}\right) X_{v}\left(w_{i}\right)\right] \quad\binom{v=l+1, \ldots, k}{j=1, \ldots, N} \tag{2.16}
\end{gather*}
$$

These conditions are not fulfilled, for example, in the case of a hoop (see Section 3).
Nevertheless, Eqs. (2.14) are valid for nonholonomic systems (this fact was noted in [11]), since, despite nonfulfillment of (2.16), the operation for solving (2.12) by the Volterra method and the operation of multiplying $(2,13)$ by $\partial T / \partial \eta_{t}$ are relatively inverse for Eq . (2.11).

The validity of Eqs. (2.14) can also be verified as follows. Substituting (1.10) into

$$
\begin{equation*}
\frac{\partial T}{\partial \eta_{t}}=\sum_{i=1}^{N} m_{i}\left[u_{i}^{\prime} Y_{i}\left(u_{i}\right)+v_{i}^{\prime} Y_{t}\left(v_{i}\right)+w_{i}^{\prime} Y_{t}\left(w_{i}\right)\right] \quad(t=1, \ldots, l) \tag{2.17}
\end{equation*}
$$

and solving them for η_{k}, we obtain

$$
\begin{equation*}
\eta_{k}=\sum_{t=1}^{1} a_{i, t}^{-1} \frac{\partial T}{\partial \eta_{t}}-\sum_{t=1}^{t} a_{k i}^{-1} a_{0 l} \quad(k=1, \ldots, l) \tag{2.18}
\end{equation*}
$$

Here $a_{0 t}$ are the coefficients of η_{t} in the linear part of the kinetic energy (1.14). On substituting (1.10) and (2.18) into Expressions (1.15), we obtain

$$
\begin{gather*}
\quad\left(\frac{\partial T^{\circ}}{\partial \eta_{v}}\right)=\sum_{i=1}^{l} \frac{\partial T}{\partial \eta_{i}} \sum_{k=1}^{l} a_{k i t}^{-1} \sum_{i=1}^{N} m_{i}\left[Y_{k}\left(u_{i}\right) X_{v}\left(u_{i}\right)+\right. \\
\left.+Y_{k}\left(v_{i}\right) X_{v}\left(v_{i}\right)+Y_{k}\left(w_{i}\right) X_{v}\left(w_{i}\right)\right] \quad(v=l+1, \ldots, k) \tag{2.19}
\end{gather*}
$$

By virtue of (2.19), Eqs. (1,13) in notation (2.15) coincide with the Volterra equations (2.14), which proves their validity for nonholonomic systems.

The equations of Ferrers [12] for a nonholonomic system with l degrees of freedom defined by $3 N$ Cartesian coordinates x_{i}, y_{i}, z_{i}, subject to smooth nonholonomic constraints by virtue of which the velocities $x_{i}{ }^{\prime}, y_{i}{ }^{\prime}, z_{i}^{\prime}$ can be expressed in terms of some l unknowns $\theta_{1}{ }^{\prime}, \ldots, \theta_{!}{ }^{\prime}$,

$$
\begin{equation*}
x_{i}^{\prime}=\sum_{s=1}^{l} a_{i s} 0_{\mathrm{s}}^{\prime}, \quad y_{i}^{\prime}=\sum_{s=1}^{l} b_{i s} 0_{\mathrm{s}}^{\prime}, \quad z_{i}^{\prime}=\sum_{s=1}^{i} c_{i s} 0_{\mathrm{s}}^{\prime} \quad(i=1, \ldots, N) \tag{2.20}
\end{equation*}
$$

are of the form (*)

$$
\begin{equation*}
\frac{d}{d l} \frac{\partial T}{\partial \theta_{s}^{\prime}}-\sum_{i=1}^{N} m_{i}\left(x_{i}^{\prime} a_{i s}^{\prime}+y_{i}^{\prime} b_{i s}^{\prime}+z_{i}^{\prime} c_{i s}^{\prime}\right)=\frac{\partial \sigma^{\prime}}{\partial 0_{s}} \quad(s=1, \ldots, l) \tag{2.21}
\end{equation*}
$$

Here $a_{i s}{ }^{\prime}, b_{i s}{ }^{\prime}, c_{i s}{ }^{\prime}$ are the derivatives of $a_{i s}, b_{i s}, c_{i s}$ with respect to $t ; \partial / \partial 0_{s}$ are the operators

$$
\begin{equation*}
\frac{\partial}{\partial \theta_{s}}=\sum_{i=1}^{N}\left(a_{i s} \frac{\partial}{\partial x_{i}}+b_{i s} \frac{\partial}{\partial y_{i}}+c_{i s} \frac{\partial}{\partial z_{i}}\right) \quad(s=1, \ldots, l) \tag{2.22}
\end{equation*}
$$

By virtue of the fact

$$
\begin{gather*}
a_{i s}{ }^{\prime}=\sum_{r=1}^{l} \frac{\partial a_{i s}}{\partial \theta_{r}} \theta_{r}{ }^{\prime}, \quad b_{i s}{ }^{\prime}=\sum_{r=1}^{l} \frac{\partial b_{i s}}{\partial \theta_{r}} \theta_{r}^{\prime}, \quad c_{i s}{ }^{\prime}=\sum_{r=1}^{l} \frac{\partial c_{i s}}{\partial \theta_{r}} \theta_{r}^{\prime} \tag{2.23}\\
\frac{\partial x_{i}^{\prime}}{\partial \theta_{s}}=\sum_{r=1}^{l} \frac{\partial a_{i r}}{\partial \theta_{s}} \theta_{r}^{\prime} \quad \frac{\partial y_{i}^{\prime}}{\partial \theta_{s}}=\sum_{r=1}^{l} \frac{\partial b_{i r}}{\partial \theta_{s}} \theta_{r}^{\prime}, \quad \frac{\partial z_{i}^{\prime}}{\partial \theta_{s}}=\sum_{r=1}^{l} \frac{\partial c_{i r}}{\partial \theta_{s}} \theta_{r}{ }^{\prime} \\
(r, s=1, \ldots, l ; i=1, \ldots, N)
\end{gather*}
$$

Eqs. (2.21) can be reduced to the form of (1,13),

$$
\begin{gather*}
\frac{d}{d t} \frac{\partial T}{\partial \theta_{s}^{\prime}}-\frac{\partial(T+U)}{d \theta_{s}}-\sum_{r=1}^{l} \theta_{r}^{\prime} \sum_{i=1}^{N}\left[\left(\frac{\partial a_{i s}}{\partial \theta_{r}}-\frac{\partial a_{i r}}{\partial \theta_{s}}\right) \frac{\partial T^{\circ}}{\partial x_{i}^{\prime}}+\right. \\
\left.+\left(\frac{\partial b_{i s}}{\partial \theta_{r}}-\frac{\partial b_{i r}}{\partial \theta_{s}}\right) \frac{\partial T^{\circ}}{\partial y_{i}^{\prime}}+\left(\frac{\partial c_{i s}}{\partial \theta_{r}}-\frac{\partial c_{i r}}{\partial \theta_{s}}\right) \frac{\partial T^{\circ}}{\partial z_{i}^{\prime}}\right]=0 \quad(s=1, \ldots, l) \tag{2.24}\\
T^{\circ}=\frac{1}{2} \sum_{i=1}^{N} m_{i}\left(x_{i}^{\prime 2}+y_{i}^{\prime 2}+z_{i}^{\prime 2}\right)
\end{gather*}
$$

[^1]Eqs. (2.24) in generalized coordinates were obtained in [14]. They can be generalized for the case of Poincaré-Chetaev variables by considering a nonholonomic system defined by n variables x_{1}, \ldots, x_{n} with $n-k$ holonomic constraints used to construct system (1.1) with $k-l$ nonholonomic constraints, by virtue of which the parameters $\eta_{1}, \ldots, \eta_{h}$ and $\omega_{1}, \ldots, \omega_{k}$ can be expressed in terms of l independent quantities θ_{s}^{\prime} $\delta 0_{s}$ in the form

$$
\begin{equation*}
\eta_{v}=\sum_{s=1}^{i} c_{v s} \theta_{s}^{\prime}+c_{v 0}, \quad \omega_{v}=\sum_{s=1}^{l} c_{v s} \delta \theta_{s} \quad\left(v=1, \ldots, l_{s}\right) \tag{2.25}
\end{equation*}
$$

Now, taking $0_{s}{ }^{\prime}, \delta 0_{s}$ as the parameters of the real and possible displacements of the nonholonomic system, instead of (1.5),(1.7) and (1.13), we obtain

$$
\begin{align*}
& Y_{0}=X_{0}+\sum_{v=1}^{k} c_{v 0} X_{v}, \quad Y_{s}=\sum_{v=1}^{k} c_{v s} X_{v} \quad(s=1, \ldots, l) \tag{2.26}\\
& k_{r s v}=\sum_{\mu \rightarrow t}^{k} c_{\mu \nu}\left(c_{r \mu \nu}+\sum_{i}^{k} c_{i r r} c_{\gamma \mu \nu}\right), \quad k_{r s v}^{*}=k_{r * v}+Y_{r}\left(c_{v v}\right)+Y_{v}\left(c_{v r}\right) \tag{2.27}\\
& (r=0,1, \ldots, l ; s=1, \ldots, l ; v=1, \ldots, k) \\
& \frac{d}{d l} \frac{\partial T^{\prime}}{\partial 0_{s}^{\prime}}-Y_{s}(T+U)-\sum_{v=1}^{k}\left(h_{0 s v}^{*}+\sum_{r=1}^{l} 0_{r}^{\prime} \mu_{r s v}^{*}\right)\left(\frac{\partial T^{\prime v}}{\partial \eta_{v}}\right)=0 \quad(s=1, \ldots, l) \tag{2.28}
\end{align*}
$$

Here T° is the kinetic energy computed from Formulas (1.16).
Eqs. (2.28) subsume as special cases Eqs. (2.24) in Cartesian and generalized coordinates. When (2.25) are of the form (1.2), Eqs. (2.28) can be reduced to the form of Eqs. (1,13), which implies their equivalence.
3. Example. Let us consider the motions of a hoop defined by the six variables $\theta, \downarrow, \varphi, \xi, \eta, \zeta$ under the holonomic constraint [13]

$$
\begin{equation*}
\zeta-a \sin \theta=0 \tag{3.1}
\end{equation*}
$$

and the nonholonomic constraints

$$
\begin{array}{r}
\xi^{\prime}-a \sin \psi \sin 00^{\prime}+a \cos \psi \cos \theta \psi^{\prime}+a \cos \psi \varphi^{\prime}=0 \\
\eta^{\prime}+a \cos \psi \sin 00^{\prime}+a \sin \psi \cos \theta+a \sin \psi \varphi^{\prime}=0 \tag{3.2}
\end{array}
$$

Taking $0, \psi, \varphi, \xi, \eta, \zeta$ as the Poincare -Chetaev parameters, and the projections p, q, r, of the angular velocity (defined in [13]) and $\xi^{\prime}, \eta^{\prime}$ as the parameters of the true displacements of the holonomic system corresponding to the hoop (without allowance for constraints (3.2)), we obtain

$$
\begin{gather*}
\eta_{1}=p=\theta^{\prime}, \quad \eta_{2}=q=\psi^{\prime} \sin \theta, \quad \eta_{3}=r=\psi^{\prime} \cos \theta+\varphi^{\prime}, \quad \eta_{4}=\xi^{\prime}, \quad \eta_{5}=\eta^{\prime} \tag{3.3}\\
x_{0}=\frac{\partial}{\partial t}, \quad X_{1}=\frac{\partial}{\partial \theta}+a \cos \theta \frac{\partial}{\partial \zeta}, \quad X_{2}=\frac{1}{\sin \theta} \frac{\partial}{\partial \psi}-\operatorname{ctg} \theta \frac{\partial}{\partial \varphi} \\
x_{5}=\frac{\partial}{\partial \varphi}, \quad x_{4}=\frac{\partial}{\partial \xi}, \quad x_{5}=\frac{\partial}{\partial \eta} \tag{3.4}
\end{gather*}
$$

The commutators of operators (3.4) with the exception of

$$
\left(X_{1}, x_{2}\right)=-\operatorname{ctg} \theta x_{2}+x_{3}
$$

are equal to zero.
Nonholonomic constraints (3.2) reduce to (1.2) in the form

$$
\begin{equation*}
\eta_{4}=a \sin \psi \sin \theta \eta_{1}-a \cos \psi \eta_{3}, \quad \eta_{5}=-a \cos \psi \sin \theta \eta_{1}-a \sin \psi \eta_{3} \tag{3.5}
\end{equation*}
$$

The operators of the displacements of the nonholonomic system of the hoop are

$$
\begin{gather*}
Y_{0}=\frac{\partial}{\partial t}, \quad Y_{1 .}=\frac{\partial}{\partial \theta}+a \sin \psi \sin \theta \frac{\partial}{\partial \xi}-a \cos \psi \sin \theta \frac{\partial}{\partial \eta}+a \cos \theta \frac{\partial}{\partial \xi} \tag{3.6}\\
Y_{2}=\frac{1}{\sin \theta} \frac{\partial}{\partial \psi}-\operatorname{ctg} \theta \frac{\partial}{\partial \varphi}, \quad Y_{3}=\frac{\partial}{\partial \varphi}-a \cos \psi \frac{\partial}{\partial \xi}-a \sin \psi \frac{\partial}{\partial \eta}
\end{gather*}
$$

Here

$$
\left(Y_{1}, Y_{2}\right)=-\operatorname{ctg} 0 Y_{2}+Y_{s_{1}} \quad\left(Y_{2}, Y_{3}\right)=\frac{a \sin \psi}{\sin 0} X_{4}-\frac{a \cos \psi}{\sin \theta} X_{6}
$$

The kinetic energy T, T^{0} and the force function U are given by [13]

$$
\begin{gather*}
T=1 / 2\left[\left(A+a^{2}\right) \eta_{1}^{2}+A \eta_{2}^{2}+\left(C+a^{2}\right) \eta_{3}^{2}\right], \quad U=-a g \sin \theta \\
T^{0}=1 / 2\left[\left(A+a^{2} \cos ^{2} \theta\right) \eta_{1}^{2}+A \eta_{2}^{2}+C \eta_{2}^{2}+\eta_{4}^{2}+\eta \eta_{3}^{2}\right] \tag{3.7}
\end{gather*}
$$

Equations (1.13) yield

$$
\begin{gather*}
\left(A+a^{2}\right) \eta_{1}^{\prime}-A \operatorname{ctg} \theta \eta_{2}^{3}+\left(C+a^{2}\right) \eta_{2} \eta_{3}+a_{6} \cos \theta=0 \\
A \eta_{2}^{\prime}+A \operatorname{ctg} \theta \eta_{1} \eta_{2}-C \eta_{1} \eta_{3}=0, \quad\left(C+a^{2}\right) \eta_{3}^{\prime}-a^{2} \eta_{1} \eta_{3}=0 \tag{3.8}
\end{gather*}
$$

In [13] these equations were derived from the general theorems of dynamics and from Appell's equations.

Substituting (3.5) into the function $T^{\circ}(3.7)$, we obtain the expression for θ given in [1].

$$
\begin{equation*}
\theta=1 / 2\left[\left(A+a^{2}\right) \eta_{1}^{2}+A \eta_{2}^{2}+\left(C+a^{2}\right) \eta_{3}^{2}\right] \tag{3.9}
\end{equation*}
$$

This expression coincides with the expression for T in (3.7), so that Eqs. (3.14) of [1] also yield (3.8).

The acceleration energy for the hoop is

$$
\begin{gather*}
S=1 / 2\left[\left(A+a^{2}\right) \eta_{1}^{\prime 2}+A \eta_{2}^{\prime 2}+\left(C+a^{2}\right) \eta_{3}^{\prime 2}+2\left(A \operatorname{ctg} \theta \eta_{2}-C \eta_{3}\right)\left(\eta_{1} \eta_{2}^{\prime}-\eta_{2} \eta_{1}^{\prime}\right)-\right. \\
\left.-2 a^{2} \eta_{2}\left(\eta_{1} \eta_{3}^{\prime}-\eta_{3} \eta_{1}^{\prime}\right)\right]+\cdots \tag{3.10}
\end{gather*}
$$

Here the dotted lines represent terms not containing $\eta_{1}{ }^{\prime}, \eta_{2}{ }^{\prime}, \eta_{3}{ }^{\prime}$.
By virtue of (3.10), Appell's Eqs. (2.3) also yield Eqs. (3.8).
The Cartesian coordinates u_{i}, v_{i}, w_{i} of the i th point of the hoop can be expressed in terms of the chosen variables,
$u_{i}=\xi+x_{i}(-\cos \theta \sin \psi \sin \psi+\cos \psi \cos \varphi)+y_{i}(-\cos \theta \sin \psi \cos \varphi-\cos \theta \sin \varphi)+z_{i} \sin \theta \sin \psi$
$\boldsymbol{v}_{\boldsymbol{i}}=\eta+x_{i}(\cos \theta \cos \psi \sin \varphi+\sin \psi \cos \varphi)+y_{i}(\cos \theta \cos \psi \cos \varphi-\sin \psi \sin \varphi)-z_{i} \sin \theta \cos \psi$

$$
\begin{equation*}
w_{i}=\zeta_{i}+x_{i} \sin \theta \sin \varphi+y_{i} \sin \theta \cos \varphi+z_{i} \cos \theta \quad(i=1,2, \ldots) \tag{3.11}
\end{equation*}
$$

Here x_{i}, y_{i}, z_{i} are the coordinates of the same i th point in the system whose axes are rigidly attached to the hoop and are its principal axes of inertia.
Commutation relations (2.6) for $u_{i .}$ and v_{i}, w_{i} in Hamel's method yield

$$
\begin{gather*}
\sum_{s=1}^{5}\left(\frac{d \omega_{g}}{d t}-\delta \eta_{s}\right) x_{s}\left(u_{i}\right)+\left(\omega_{1} \eta_{2}-\omega_{2} \eta_{2}\right)\left[\operatorname{ctg} \theta X_{2}\left(u_{i}\right)-X_{3}\left(u_{i}\right)\right]=0 \tag{3.12}\\
(i=1,2, \ldots)
\end{gather*}
$$

By virtue of (3.12), Beltrami Eq. (2.7) for the hoop becomes

$$
\begin{equation*}
\sum_{s=1}^{5} \omega_{s}\left[\frac{d}{d l} \frac{\partial T^{\circ}}{\partial \eta_{s}}-X_{s}\left(T^{\circ}+U\right)\right]=\left(\omega_{1} \eta_{2}-\omega_{2} \eta_{1}\right)\left(\operatorname{ctg} 0 \frac{\partial T^{\circ}}{\partial \eta_{j}}-\frac{\partial T^{\circ}}{\partial \eta_{i}}\right)=0 \tag{3.13}
\end{equation*}
$$

With allowance for the nonholonomic constraints, this equation yields

$$
\begin{align*}
& \frac{d}{d l}\left(A+a^{2} \cos ^{2} \theta\right) \eta_{1}+a \sin 0 \sin \psi \frac{d \eta_{1}}{d t}-a \sin 0 \cos \psi \frac{d \eta_{s}}{d l}+ \\
& +a^{2} \sin 0 \cos 0 \eta_{1}^{2}-A \operatorname{ctg} 0 \eta_{2}^{2}+C \eta_{2} \eta_{3}+a g \cos 0=0 \tag{3.14}
\end{align*}
$$

$\frac{d}{d t} A \eta_{2}+A \operatorname{ctg} 0 \eta_{1} \eta_{2}-C \eta_{1} \eta_{2}=0, \quad \frac{d}{d t} C \eta_{3}-a \cos \psi \frac{d \eta_{1}}{d t}-a \sin \psi \frac{d \eta_{\mathrm{B}}}{d t}=0$
Substituting (3,5) into these expressions, we again have Eqs. (3.8).
Relations (2.12) for u_{i} (and v_{i}, w_{l}) become

$$
\begin{align*}
& \quad \sum_{s=1}^{3}\left(\frac{d \omega_{s}}{d \iota}-\delta \eta_{B}\right) Y_{s}\left(u_{i}\right)+\left(\omega_{1} \eta_{2}-\omega_{2} \eta_{1}\right)\left[\operatorname{ctg} \theta Y_{2}\left(u_{i}\right)-Y_{3}\left(u_{i}\right)\right]+ \\
& + \tag{3.15}\\
& +\left(\omega_{2} \eta_{3}-\omega_{3} \eta_{2}\right)\left[-\frac{a \sin \psi}{\sin 0} X_{i}\left(u_{i}\right)+\frac{a \cos \psi}{\sin 0} X_{s}\left(u_{i}\right)\right]=0 \quad(i=1,2, \ldots)
\end{align*}
$$

Making use of (3.15) without solving them for $d \omega_{a} / d t-\delta \eta_{0}$, we can reduce Beltrami Eq. $(2,11)$ to the form

$$
\begin{align*}
\sum_{s=1}^{a} \omega_{s} & {\left[\frac{d}{d l} \frac{\partial T}{\partial \eta_{s}}-Y_{s}(T+U)\right]-\left(\omega_{1} \eta_{2}-\omega_{2} \eta_{1}\right)\left(\operatorname{ctg} \theta \frac{\partial T}{\partial \eta_{2}}-\frac{\partial T}{\partial \eta_{\mathrm{a}}}\right)-} \\
& -\left(\omega_{2} \eta_{3}-\omega_{3} \eta_{2}\right)\left[-\frac{a \sin \psi}{\sin \theta}\left(\frac{\partial T^{\circ}}{\partial \eta_{\mathrm{a}}}\right)+\frac{a \cos \psi}{\sin \theta}\left(\frac{\partial T^{\circ}}{\partial \eta_{\mathrm{y}}}\right)\right]=0 \tag{3.16}
\end{align*}
$$

By (3.7), the latter again gives us Eqs. (3.8).
Wishing to verify conditions (2.16), we obtain

$$
\begin{gathered}
Y_{1}\left(u_{i}\right) \frac{a}{A+a^{2}}=\frac{\sin \psi}{\sin \theta}, \quad Y_{1}\left(v_{i}\right) \frac{a}{A+a_{2}}=-\frac{\cos \psi}{\sin \theta}, \quad Y_{1}\left(w_{i}\right) \frac{a}{A+a^{2}}=0 \\
(i=1,2, \ldots)
\end{gathered}
$$

These relations are not fulfilled, since $a \neq 0$.
However, Eqs. (2.14) nevertheless yield the correct equations of motion of the hoop. In fact, solving (3.15) by the Volterra method, we obtain

$$
\begin{gathered}
a_{122}=-a_{212}=\operatorname{ctg} \theta, \quad a_{193}=-a_{213}=-1 \\
a_{231}=-a_{821}=-\frac{a}{A+a^{2}} \frac{\sin \psi}{\sin \theta} \sum_{i=1,2 \ldots} m_{i} Y_{1}\left(u_{i}\right)+\frac{a}{A+a^{2}} \frac{\cos \psi}{\sin \theta} \sum_{i=1,2 \ldots} m_{i} Y_{1}\left(v_{i}\right) \\
a_{282}=-a_{322}=-\frac{a}{A} \frac{\sin \psi}{\sin \theta} \sum_{i=1,2 \ldots} m_{i} Y_{2}\left(u_{i}\right)+\frac{a}{A} \frac{\cos \psi}{\sin \theta} \sum_{i=1,2 \ldots} m_{i} Y_{2}\left(v_{i}\right) \\
a_{235}=-a_{822}=-\frac{a}{C+a^{12}} \frac{\sin \psi}{\sin \theta} \sum_{i=1,2 \ldots} m_{i} Y_{3}\left(u_{i}\right)+\frac{a}{C+a^{2}} \frac{\cos \psi}{\sin \theta} \sum_{i=1,2 \ldots} m_{i} Y_{3}\left(v_{i}\right)
\end{gathered}
$$

Substituting these quantities into (2.14) and recalling that

$$
\frac{\partial T^{\circ}}{\partial \eta_{i}}=\sum_{i=1,2 \ldots} m_{i} u_{i}^{\prime}, \quad \frac{\partial T^{\circ}}{\partial \eta_{s}}=\sum_{i=1,2 \ldots} m_{i} v_{i}^{\prime}
$$

we obtain (3.8), i.e. the equations of motion of the hoop.
Conditions (2.20) and Eqs. (2.21) for the hoop are

$$
\begin{gathered}
u_{i}^{\prime}=\sum_{s=1}^{3} \eta_{s} Y_{s}\left(u_{i}\right), \quad v_{i}^{\prime}=\sum_{s=1}^{3} \eta_{s} Y_{s}\left(v_{i}\right), \quad w_{i}^{\prime}=\sum_{s=1}^{3} \eta_{B} Y_{s}\left(w_{i}\right) \quad(i=1,2, \ldots) \\
\frac{d}{d t} \frac{\partial T}{\partial \eta_{s}}-\sum_{i=1.2, \ldots} m_{i}\left[u_{i}^{\prime} \frac{d Y_{s}\left(u_{i}\right)}{d t}+v_{i}{ }^{\prime} \frac{d Y_{s}\left(v_{i}\right)}{d t}+w_{i}^{\prime} \frac{d Y_{s}\left(w_{i}\right)}{d t}\right]=Y_{s}(U) \quad(s=1,2,3)
\end{gathered}
$$

By virtue of the relations
$\frac{d Y_{s}\left(u_{i}\right)}{d t}=\sum_{r=1}^{3} \eta_{r} Y_{r} Y_{s}\left(u_{i}\right), \quad Y_{s}\left(u_{i}{ }^{\prime}\right)=\sum_{r=1}^{3} \eta_{r} Y_{s} Y_{r}\left(u_{i}\right) \quad(s=1,2,3 ; i=1,2, \ldots)$
the above expressions can be rewritten in the form of (2.24),

$$
\begin{align*}
& \frac{d}{d l} \frac{\partial T}{\partial \eta_{s}}-\sum_{r=1}^{3} \eta_{r} \sum_{i=1.2 \ldots}\left[\frac{\partial T^{\circ}}{\partial u_{i}^{\prime}}\left(Y_{r}, Y_{s}\right) u_{i}+\frac{\partial T^{\circ}}{\partial v_{i}{ }^{\prime}}\left(Y_{r}, Y_{s}\right) v_{i}+\right. \\
& \left.\quad+\frac{i T^{0}}{\partial u_{i}^{\prime}}\left(Y_{r}, Y_{s}\right) w_{i}\right]=Y_{s}(T+U) \quad(s=1,2,3) \tag{3.47}
\end{align*}
$$

Substituting (3.6) and (3.7) into (3.17), we again obtain (3.8). Here

$$
T^{\circ}=\frac{1}{2} \sum_{i=1,2 \ldots .} m_{i}\left(u_{i}^{\prime 2}+v_{i}^{\prime 2}+w_{i}{ }^{2}\right)
$$

The author is grateful to V . V. Rumiantsev for supervising the present study.

BIBLIOGRAPHY

1. Fam Guen, On the motion equations of nonholonomic mechanical systems in Poincaré-Chetaev variables. PMM Vol, 31, N2, 1967.
2. Chaplygin, S. A., Motion of a solid of revolution on a horizontal plane. Collected Works, Vol. 1. Gostekhizdat, Moscow-Leningrad, 1948.
3. Dobronravov, V. V., Analytical dynamics in nonholonomic coordinates, Uch. Zap. Mosk. Gos. Univ., Mekhanika, Vol. 2, Ni122, 1948.
4. Appell, P., Sur les mouvements de roulement. Equations du mouvement analogues à celles de Lagrange. Compt. Rend., Vol. 129, 1899.
5. Hamel, G., Die Lagrange-Eulerschen Gleichungen der Mechanik. Z. Math. Phys. , Vol. 50, 1904.
6. Volterra, V., Sopra una classe di equazioni dinamichi. Atti Acad, Sci., Cl. Sci. Fis., Math. a Natur., Torino, Vol. 33, 1898.
7. Shagi-Sultan, Sh. Z. . The Method of Kinetic Characteristics in Analytical Mechanics. "Nauka" Press, Alma-Ata, 1966.
8. Hölder, A. Über die Prinzipien von Hamilton und Maupertius, Nachrichten von der Kön. Ges. der Wissenschaften zu Göttingen. Math, -Phys. K1., Vol. 2, 1896.
9. Neimark, Iu. I, and Fufaev, N. A., On the transpositional relations in analytical mechanics of nonholonomic systems. PMM Vol. 24, N.6, 1960.
10. Lur'e, A. I., Analytical Mechanics, Fizmatgiz, Moscow, 1961.
11. Neimark, Iu.I. and Fufaev, N. A., On Volterra's error in deriving the equations of motion of nonholonomic systems. PMM Vol, 15, N5, 1951.
12. Ferrers, N. M. . Extensions of Lagrange's equations. Quart. J. Math. , Ne45, 1875.
13. Appell, P. , Theoretical Mechanics, Vol.2. Fizmatgiz, Moscow, 1960.
14. Fufaev, N. A. . Chaplygin's equations and the theorem of the additional multiplier in the case of quasicoordinates. PMM Vol. 25, N23, 1961.

[^0]: *) The problem of equivalence of the Chaplygin [2] and Appell [4] equations is discussed by M. I. Efimov in his candidate's thesis "On Chaplygin's Equations for Nonholonomic Systems" (Institute of Mechanics, Akad. Nauk SSSR) and by Shagi-Sultan in [7].
 **) These conditions are justified for nonholonomic systems in [5,6 and 8-10].

[^1]: *) In [13] Appell investigated the case where θ_{3} are the true generalized coordinates of the system.

