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The equations of motion of nonholonomic systems in Poincark-Chetaev variables [l] are 
derived directly from the general equation of dynamics with simultaneous allowance for 

all imposed constraints. Their equivalence to equations of motion derived by other me- 
thods is proved. 

1, The equation8 of motton of nonholonomtc 8ystemu. Letuscon- 
sider a nonholonomic system with 1 degrees of freedom whose positions are defined by 
11 Poincare-Chetaev variables X, , . , , , 5, with p holonomic and q nonholonomic linear 
constraints. 

As in [l].let x’,, xl,..., XI, with the commutators 

(X,; X,) = 5 cl& (rrr0, I*..., k; s=I ,..., k; k-n-p) {i.i) 

i=1 
be the displacement operators of the so-called associated holonomic system obtained 
by removing all q nonholonomic constraints from the system under consideration ; 

1117 *-a, l]h and tit,..., tib are the parameters of the real and possible displacements 
of this system ; /2 is the number of degrees of freedom ; the nonholonomic constraints 

are reducible to the relations 
1 

qv = 2 wIs+ cvo, w, = i Cw% (V =I i_ I,..., k; t-k-q) (1.J) 

s&g s=1 

Here C,t , cys, CW are certain functions of t and Xi which depend only on the con- 

straint conditions and on the choice of the parameters Y) s and O, of the corresponding 

holonomic system, 

Then, by virtue of (2.2) of [l] and (1,2), the changes df and Sf in an arbitrary func- 
tion f(t, Xi) on the real and possible displacements of the nonholonomic system, when 

all p -J- 4 constraint conditions are fulfilled, are given by Formulas 

df = [Ye(l) + i zlsy, (f)jdt, Sf = i Q]‘,(f) (1.3) 
S=1 S=1 

Here Yo, Y,,..., Yl are the displacement operators of the nonholonomic system, 

which can be expressed in terms of the operators X, and the commutators, i.e. 

Ye = x’s + $-J c~~XY) 

(1.4) 

v=tf1 
(Y,p YJ = i k,,tYt + i h’*rsvXv (i zy: !.::‘i’ ‘) 

t=1 v=t+1 
The coefficients in Expression (1.4) are given by Formulas 
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r==O, i,..,, t; r=t )I.. * I 
l=i . -**, I, 1+ i, . ..) J k; v=l+l,...k 

We can use operators (1.4) to find the equations of motion of a nonholonomic system 

with ideal consuaints and the force function U’from the general equation of dynamics 

Here N denotes the number of material points of the system ; ii,, vIt IQ are the 

Cartesian coordinates of the Lth point, which, by the conditions of the problem, are func- 
tions of the variables t, X1,..., X,; Ut”, Vl”, WI” are its accelerations; $, &vi, 

6wl are the possible displacements of a point permitted by all the constraints, and 
defined, in accordance with (1.3). by ~orm~as 

b&i = i W,Y,(Ui), bq= i ~~Y~(~~), 

1 
8wt -= yJ ~~~‘(~?~) 

a=1 1x1 a=t 
(1; = 1, .,.) N) 

(3.7) 

To this end, subs~tuting (1.7) into (1.6), by virtue of the independence of ol, . . . , Or, 
we obtain N 

2 ml Iul”Y&Q)+ rt("Y,(ut) + W{Y‘(W~)] - Y,(U)= 0 
(1.8) 

P= fw.,4 
or 

Here ur’, t+‘+ ~4’ are the velocities of the point defined, according to (1.3). by 
formulas written only for f = t.5s , 

U,’ = Y&()-1_ i tq,Y,(ur) o=i, "'9 NJ 
From (I. 10) we obtain a=1 (1.10) 

s= ,*.*, i s? 
i = i,,..., N 

(1 *ii) 

= Ut, Vi> Wi we have 

A= Y*(g) +(Y@, Y&f+ t: r),(Y,, Y,)f (s=k..‘pQ 
dY (f) 

dt 
(1.12) 

r=i 
Substituting (1.11) and (1.12) into (1.9) with allowance for (1.4), we obtain 

(s=i* ...I 0 (1.13) 

These are the equations of motion of a nonholonomic system in Poincar&Chetaev 
variables derived from the general equation of dynamics with simultaneous allowance 
for all the constraints imposed on the system beginning at the initial instant. Here I’ is 
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the kinetic energy of the nonholonomic system, 
N 

T (TV 2ir 1119 . . ., 111) = $2 Mi (U?+ UI” + WI”) (1.14) 

and (aT”/a$) denote the Expressions 
- i=l 

N 

($)=Z1 WZi [Ui’Xv (Ui) + Ui'Xv (Vi) + Wi’Xv (Wi)] (1.15) 

(Y=1+ 1, . ..) k) 

Let us show that the (aT’/aq,) h ave the mechanical values of the impulses correspond- 
ing to the dependent parameters 11” of (1.,2) if To is the kinetic energy of the correspond- 

ing holonomic system computed without allowance for the nonholonomic constraints or 
for (1.2) using Formulas 

N 

T” - f 2 mi (u;” -/- u;” + wi2), Ui = X0 (Ui) + ~ q8Xs (Ui) 

(1.16) 

(i = I,“‘, N, 
i-t S.=l 

Here the formulas for the derivatives have been written for ui’only. In fact, from 

(1.16) we can obtain, among other things, Expressions (1.17) 

Substituting (1.17) into (1.15). we obtain from these relations expressions for the im- 
pulses d T”/hlv. 

Eqs. (1.13) coincide with Eqs. (3.14) of [l] obtained by the Chaplygin method r2], 
since the kinetic energy T in (1.13) computed from Formula (1.14), and the function 

@ in [I] are equal to each other. This can be verified by computation. 

2. The equivalence of the equationa of motion of nonholonomlc 
ry 8 t e ma. There are at present many methods for deriving the equations of motion of 
nonholonomic systems. This often raises the question of their equivalence [a]. In this 
connection, having shown that the above direct method and the method of Chaplygin 

yield equivalent results, let us consider the methods of Appell [4], Hamel [5], Volterra 

[S], et al. 
Differentiating (1.10) with respect to t, we obtain 

1 I 

Ui”= 2 q,‘y,(Ui) + **.v Vi’ = 2 ~s’YB(Ui) + ,.., 
s-1 S==l 

lUik zzz 2 qa’Y,(wi) +- . ii = 1, . . . . N) (2.1) 
S=l 

Here we have written only the formulas for 1~~‘: the dotted lines denote terms not con- 
taining i] R’ = dq,Jrlt (s = I),.., 1). 

Stipulating that 

Y,” (111) = 5 , 
av ,I‘ 

Y, (II)) = -+ ) 
aw; s=l, ..,. 1 

a hy 
I’, (WI) = 7-r 

drl, ( i = 1, . . . . N ) 
(2.2) 

and substituting these quantities into (1.8), we obtain from (2.1) the Appell equations 
for a nonholonomic system in Poincark-Chetaev variables, 

as 
- = Y,(U) 
Q’ 

(s = 1, . . . . 1) (2.3) 
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Here. S is the acceleration energy computed from Formulas (‘2. i), 

The Appell Eqs. (a. 3) are equivalent to Eqs. (1.13), since computations show that 

Moreover, the right sides of (2.5) become (1.13). as we can see (*) from (1.9). 
According to Hamel [S], the equations of motion of nonholonomic systems are deriva- 

ble from the conditions 

&.Q* = 0, 
d&u. 
--$ - 6wtf = 0 (i = 1, _..* Iv) (2.6) 

established for all Cartesian c~rd~ates of points of the system (* *), and from the Bel- 
trami equation, which can be written in PoincarkXhetaev variables as 

k 

(2.7) 

The operations cl and 6 are employed here without allowance for nonholonomic con- 
straints, i, e. according to (1.5) of [1] ; To is the kinetic energy of the corresponding 
holonomic system computed from Formulas (1.16). In Hamel’s method nonholonomic 

constraints (1.2) are allowed for only after (2.7) under (2.6) has already been reduced 
to form (3.2) of [I]. This implies the natural equivalence of (1.13) and the equations 
obtained by Hamel’s method, since the latter can be reduced to (1.13) or to the equiva- 

lent Eqs. (3.14) of [l] by converting to the kinetic energy T according to Formula (3.8) 

of Cl]. 
For example, let us consider the case cVs = c.,, = 0 or q, = 0, au = 0 (see 

[S and 31). The Hamel equations are then 
(4.tl) 

d Xi” 

27 %y %,a* f 1 
-[s,()/‘O+ U)jll,=,, -- i (cleat + $ ~qrcI,i; [F’) = 0 

2=1 r==t t %, =o 

(s= 1, .*., I) 

Converting to the kinetic energy T or @ according to Formula (3.8) of [l] and making 
the substitutions aT0 

( > arl, 4,=0 
= c t IX, (T0)J9,=* = X,(T) (8 = 1, *.*, r) (249 

in (2.8). we obtain the special case of Eqs. (I. 13) when cyd = c,, = 0 

(2.10) 

*) The problem of equivalence of the Chaplygin @] and Appell [4] equations is discussed 
by M. I. Efimov in his candidate’s thesis “On Chaplygin’s Equations for Nonholonomic 
Systems” (Institute of Mechanics, Akad. Nauk SSSR) and by Shagi-Sultan in [7]. 

**) These conditions are justified for nonholonomic systems in [5,6 and 8 - 10). 
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In [S] Volterra derived the equations of motion of nonholonomic systems from the 

Beltrami equation and conditions (2.6), defining the operations d and & as in (1,3), 

Here T is kinetic energy (X.14) ; Expressions (2.12) for LJi and wi are obtainable in 

similar fashion. Following Volterra. we multiply (2. i2) by mrY, (ui), nztY# (ut), 
miY* (Z-Pi), sum over i from 1 to N. and solve the result for do,/& - 6q, 

(t=l,. . ., I) (2.13) 

Subsdtuting (2.13) into (2.11). we obtain the Volterra equations in Poincar&Chetaev 
variables d ar 

~+AT+U)--~ (oe.,+i %%J$=O (a= i, . . . . 2) 
. t==1 r=1 1 

Here 

n,,t = km + $ ktsv i a,: i 

(2.14) 

mi [Y, (Ui) Xv (“i) + 
v==r +1 k=l i=l 

+ I'A.(L'i) Xv (vi) + Y,(wi) ~Y(~"l)] 
( 

P =n, t,.... 1 

s, t -2 1, . . . . 1 ) 
(3.15) 

where ai: is an element of the inverse of the matrix whose elements are the coefficients 
n ~,l of the products 11 jr11 1 in the quadratic part of the kinetic energy T (1.14). 

The above derivation of Eqs. (2.14) cannot be considered adequately justifiable for 

nonholonomic systems, since, generally speaking, (2.13) may not be a solution of system 

(2.12) because of its ~determ~acy (this was noted in [6 and 31). In fact. substituting 
(2.13) into (2. p2),we obtain the following expression for Uj (and analogously for ut and 

Wj): 
X, (Uj) = $J Yf (Uj) $J U{: 2 mi [Y, (ut) Xv (ui) + 

t=1 A=1 f=l 

+ YA. (u*) Xv (UJ + YI. @i) xv twill 
v=l+i,..., k 

f- ‘--1 ,*.., N 
(2.16) 

These conditions are not fulfilled, for example, in the case of a hoop (see Section 3). 
Nevertheless, Eqs. (2.14) are valid for nonholonomic systems (this fact was noted in 

pl]), since, despite nonfulfillment of (2.16). the operation for solving (2.12) by the 
Volterra method and the operation of multiplying (2.13) by dT/dqt are relatively 
inverse for Eq, (2.11). 

The validity of Eqs. (2.14) can also be verified as follows. Substi~~g (1.10) into 

-$” = $ mi [UI’YL (Ui) + t7i’Yt (Vi) + Uli’Yf (ZUi)] tt z I* ‘**P I) (2.17) 
i==l 

and solving them for qk, we obtain 
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(k = 1, . . . . I) 

Here Uot are the coefficients of q t in the linear part of the kinetic energy (l.14), 
On substituting (1, IO) and (2.18) into Expressions (1.15), we obtain 

+ Yfi (“i) xv (vi) + Y& (Wi) XV (loi) 
(Y = t+ 1, ..*, k) (2.10) 

By virtue of (2.19), Eqs. (I, 13) in notation (2.15) coincide with the Volterra equations 

(2.14). which proves their validity for nonholonomic systems. 
The equations of Ferrers [12] for a nonholonomic system with j degrees of freedom 

defined by 3N Cartesian coordinates xi, yi, z i , subject to smooth nonholonomic con- 

straints by virtue of which the velocities Xi’, yi’, zi’ can be expressed in terms of some 

Z ~kno~s 01’, . .., 0,: 

1 

’ = ~ bjaO*‘, 21~ - ~ CiyOs’ 

(2.20) 

xi’ fl x a&O@‘* ?I1 (i =: 1, . . ., iv) 
s=1 S==l 'a=1 

are of the form (*) 

~ ~ - ~ lyti (5i’Uisl + Zli’bje) + Zi’Cf*‘) -;5 ~ (s =1, , . .) I) (2.24) 

i---L 
8 

Here q8’, his*, cisf are the derivatives of Uis, his, cis with respect to t; i)l’ilfl, are 

the operators 
a 

G (ca,, -=ii (2.22) 
i=l 

By virtue of the fact 

(2.23) 

Eqs, (‘2.21) can be reduced to the form of (1.13), 

(s=l,***,l) (2.24) 

*) In [13] Appeil investigated the case where $, are the true generalized coordinates of 
the system 
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Eqs. (2.24) in generalized coordinates were obtained in 114). They can be generalized 

for the case of Poincark-Chetaev variables by considering a nonholonomic system de- 
fined by n variables x1,, ..) 2, with n - /s holonomic constraints used to construct 
system (1.1) with k - I nonholonomic constraints, by virtue of which the parameters 

X,..., oh and wl,..., 01~ can be expressed in terms of d independent.auantities 0,’ 
&), in the form 

G 

t 

11” = & cysOll’ + Go, 6.b = A 3’ C”,60, (v=i,..*, 4) (2.25) 
SZl a=1 

Now, taking O,‘, 60, as the parameters of the real and possible displacements of 
the nonholonomic system, instead of (1.5), (1.7) and (1.13). we obtain 

k h’ 

Yo = so f 2 CYOXV, Y, = 2 CJ” (s = 1, . * ‘, I) (2.2F) 

Here To is the kinetic energy computed from Formulas (1.16). 
Eqs. (2.28) subsume as special cases Eqs. (2.24) in Cartesian and generalized coordi- 

nates. When (2.25) are of the form (1.2), Eqs, (2.28) can be reduced to the form of 
Eqs. (1,13), which implies their equivalence. 

3, Exrmpls. Let us consider the motions of a hoop defined by the six variables 

0,1p, 9, E, q, 5 under the holonomic constraint 1131 

5- asine = 0 (3.i) 

and the nonholonomic constraints 

5’ - a sin$sinOO’ _1- ocos~c,osO~~~’ + n cos$cp’ = 0 

11’ + n costp sin 00’ + a sin $ co.50 + a sin*cp’ = 0 (3.2) 

Taking 0, 9, v, 5, 27, 5 as the Poincare-Chetaev parameters, and the projections P, 

q, r, of the angular velocity (defined, in [13]) and E’, n’ as the parameters of the true 

displacements of the holonomic system corresponding to the hoop (without allowance 

for constraints (3.2)). we obtain 

a=pp” Q’, Ii2 = q =t#‘sin 6, 113 = r ==q’cos8 + cp’, q4 = %‘I 16 = 71’ (3.3) 

The commutators of operators (3.4) with the exception of 

(Xl, X2) = --ctge x, + x, 

are equal to zero. 
Nonholonomic constraints (3.2) reduce to (1.2) in the form 

‘14 = asingsin Br)r - acos$q,, ?b =I -acosthsin~ql - asin$ub (3.5) 

The operators of the displacements of the n~holonomic system of the hoop are 
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yo a =-, yl_=- 
at 

:o +nsin~sin8~-acos~sinO~+uC~sO~ (34 

1 a a a 6 .a 
Ya x----ctg0-&-’ 

s1n 0 thp 
Y,=:----acosJ,-g--asm9dg 

acp. 

Here 

(Yl, Yd ~-0tgOY1fY8, 

The kinetic energy !I’, To and the force function U are given by 1131 

T = */a ft.4 f aa) qf i- Am* f (C i- a*) WI, U=-aafisinO 

x0 = ‘/z [(A + fls COS’ 8) ?j12 + ki@ + cq8’ i- riA* i- qs2) (3.7) 

Equations (1.13) yield 

(A + a2)%’ - .&t&h,,s + (c + +,,Bs + ng00a6 = O 

Aq: + AWh’ln - C%tls = 0, (C + 41%;) - aa*jlqa = 0 (3.81 

In [13] these equations were derived from the general theorems of dynamics and from 

Appe-11’s equations. 
Substituting (3.5) into the function T” (3.7), we obtain the expression for FI given in 

Cl1 l 8 = % ItA + a2h2 + 422 + (C + a*h8pI (3.9) 

This expression coincides with the expression for 2’ in (3. ?).so that Eqs. (3.14) of [l] 
also yield (3.6). 

The acceleration energy for the hoop is 

S = -‘la I(A + a%~‘~ -I- Atlo’% + (C + a%r‘a + 2 fAQ+h - C%J Oh%’ - WIZ’) - 

- 2a2q2 hq8’ - %%‘)I -b ... (3.10) 

Here the dotted lines represent terms not containing T),‘, th’, Q’. 

By virtue of (3. IO), Appell’s Eqs.(2.3) also yield Eqs.(3.8). 
The Cartesian coordinates ut, vi, u+ of the i th point of the hoop can be expressed in 

terms of the chosen variables, 

uf = & +‘zi (-COs tl sin$sine + Cos~cor~) + pi (-cosOsin$cosip - CosOsinq) + zlsin6sin$ 

of =I sj + xi (co&cos*sine + sin$coscp)+ gt (~OsecOr~Oos+ sin$sing) - Z&kICOSl@ 

Wi = ci + xisinOsine + ~~sin6~0~~ + ZiCOs0 (i = 1,2,...) (3.U) 

Here zf, yit .zi are the coordinates of the same ith point in the system whose axes 
are rigidly attached to the hoop and are its principal axes of inertia. 

Commutation relations (2.6) for ui.and vi, wi in Hamel’s method yield 
6 

Z( d% 
x -ma 

> 
X,(Ui) f(w2 -@2Q)[CtgO X2(ui) -x8 (uiIl=o (3.12) 

r-1 
(i=i,2,...) 

By Virtue of (3.12), Beltrami Eq.(2.7) for the hoop becomes 
6 

(3.13) 

With allowance for the nonholonomic constraints, this equation yields 

-$ (,I + asc0ssO) nl + n sin Osin $2 -a sin Octts +$ + 
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Substituting (3.5) into these expressions, we again have Eqs. (3.8). 
Relations (2.12) for ul (and vi, wt) become 

3 
f/(J), 

x( 
- 
dl 

-fiTj*)Ya(ui)+ (Wlj2-W~l)[ctB:e ~T9("i)-Y3(ui)l + 

s=1 

Making use of (3.15) without solving them for do, / dl - 6~ we can reduce Beltrami 
Eq. (2.11) to the form 

(3.16) 

By (3.7), the latter again gives us Eqs. (3.8). 

Wish~g to verify conditions (2. X), we obtain 

(i = 1,-Z,. . .) 

These relations are not fulfilled, since a # 0. 
However, Eqs. (2.14) nevertheless yield the correct equations of motion of the hoop. 

In fact, solving (3.15) by the Volterra method, we obtain 

(1199 = -11919 = age, al99 = J-a,12 = -4 

Substituting these quantities into (2.14) and recalling that 

we obtain (3.8). i.e. the equations of motion of the hoop. 
Conditions (2.20) and Eqs. (2.21) for the hoop are 

u1 

, dY.4 (4 dY, (IF,) fty8 (wi) 
- 

dl + vi 
'-----?-+ w,' 

(11 1 dt 1 = Y,(U) (s = 1,2, 3) 
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By virtue of the relations 

dY, @a) __._&=i ?,Y,Y. (Ui)* (.v=f,2, 3; i=i, 2 ,...) 

l-=1 t-1 

the above expressions can be rewritten in the form of (2.24), 

Substi~ting (3.6) and (3.7) into (3.17), we again obtain (3.8). Here 

& 2 ?I22 (Zfi’” + Ui’” + wi”) 
i-1,2,... 

The author is grateful to V. V. Rumiantsev for supervising the present study. 
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